Understanding the role of molecular and genetic alterations in proliferation and progression of oral squamous cell carcinoma : A review article

Oral squamous cell carcinoma and genetic alterations

  • HIMANSHU SINGH yes
  • VEDANT PATEL Index Institute Of Dental Sciences, Indore, Madhya Pradesh,India-452016
  • DHEERAJ SHARMA Index Institute Of Dental Sciences, Indore, Madhya Pradesh,India-452016
  • NEERAJ SHARMA Modern Dental College & Research Center, Indore, Madhya Pradesh,India
  • RAHUL A RAZDAN Index Institute Of Dental Sciences, Indore, Madhya Pradesh,India-452016
  • NENCY PARIHAR Index Institute Of Dental Sciences, Indore, Madhya Pradesh,India-452016
Keywords: Oral squamous cell carcinoma, Genetic alterations, Molecular mechanism, Proliferation, Signaling

Abstract

Oral carcinogenesis is known as multifactorial process which engaged plentiful genetic events that transform normal activity of tumor suppressor genes and oncogenes. It is observed that aggregation of genetic alterations is the ground for  advancement of a normal cell to cancer cells, which is known as a multi-step carcinogenesis. Because of this event, growth factor production increases as well as increase in total of receptors on cell surface and increased intracellular signal messengers. The present review scrutinize the existing documentation in the literature related to the oral squamous cell carcinoma. English language articles were searched in various databases such as Pubmed, Scopus, Science direct and Google scholar. The keyword used for searching are “oral squamous cell carcinoma”, “Genetics and Oral squamous cell carcinoma”,“Molecular mechanism in oral squamous cell carcinoma”. The present review spotlights on understanding the molecular mechanism and the genetic factors which is responsible for alteration in the cell which leads to oral squamous cell carcinoma.

Author Biographies

VEDANT PATEL, Index Institute Of Dental Sciences, Indore, Madhya Pradesh,India-452016

Dr. Vedant Patel

MDS

Senior Lecturer

Department of Prosthodontics and Crown & Bridge

Index Institute of Dental Sciences, Indore, Madhya Pradesh,India-452016

Email : [email protected]

DHEERAJ SHARMA, Index Institute Of Dental Sciences, Indore, Madhya Pradesh,India-452016

Dr. Dheeraj Sharma

MDS

Prof & Head

Department of Oral & Maxillofacial Pathology &Oral Microbiology

Index Institute of Dental Sciences, Indore, Madhya Pradesh,India-452016

Email : [email protected]

NEERAJ SHARMA, Modern Dental College & Research Center, Indore, Madhya Pradesh,India

Dr. Neeraj Sharma

MDS

Professor

Department of Prosthodontics and Crown & Bridge

Modern Dental College & Research Center, Indore, Madhya Pradesh,India-452001

Email : [email protected]

RAHUL A RAZDAN, Index Institute Of Dental Sciences, Indore, Madhya Pradesh,India-452016

Dr. Rahul A Razdan

MDS

Reader

Department of Prosthodontics and Crown & Bridge

Index Institute of Dental Sciences, Indore, Madhya Pradesh,India-452016

Email : [email protected]

NENCY PARIHAR, Index Institute Of Dental Sciences, Indore, Madhya Pradesh,India-452016

Dr. Nency Parihar

MDS

Senior Lecturer

Department of Prosthodontics and Crown & Bridge

Index Institute of Dental Sciences, Indore, Madhya Pradesh,India-452016

Email : [email protected]

References

1. Enwonwu CO, Phillips RS, Ibrahim CD, Danfillo IS (2004) Nutrition and oral health in Africa. Int Dent J 54:344–351
2. Epstein JB, Zhang L, Rosin M (2002) Advances in the diagnosis of oral premalignant and malignant lesions. J Can Dent Assoc 68(10):617–621
3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57—70.
4. Califano J, van der Riet P, Westra W, Nawroz H, Clayman G, Piantadosi G, et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res 1996;56:2488—92.
5. Gollin SM. Chromosomal alterations in squamous cell carcinomas of the head and neck: window to the biology of disease. Head Neck 2001;23:238—53.
6. van Houten VM, Tabor MP, van den Brekel MW, Denkers F, Wishaupt RG, Kummer JA, et al. Molecular assays for the diagnosis of minimal residual head-and-neck cancer: methods, reliability, pitfalls, and solutions. Clin Cancer Res 2000;6: 3803—16.
7. Braakhuis BJM, Tabor MP, Leemans CR, van der Waal I, Snow GB, Brakenhoff RH. Second primary tumors and field cancerization in oral and oropharyngeal cancer: molecular techniques provide new insights and definitions. Head Neck 2002;24: 198—206
8. Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med 1997;3:177—82
9. Reid CB, Snow GB, Brakenhoff RH, Braakhuis BJ. Biologic implications of genetic changes in head and neck squamous cell carcinogenesis. Aust N Z J Surg 1997;67:410—6.
10. Forastiere A, Koch W, Trotti A, Sidransky D. Medical progress— head and neck cancer. N Engl J Med 2001;345:1890—900
11. Salehinejad J, Sharifi N, Amirchaghmaghi M, Ghazi N, Shakeri MT, Ghazi A. Immunohistochemical expression of p16 protein in oral squamous cell carcinoma and lichen planus. Ann Diagn Pathol 2014;18:210–3.
12. Nemes JA, Deli L, Nemes Z, Márton IJ. Expression of p16INK4A, p53, and Rb proteins are independent from the presence of human papillomavirus genes in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontology 2006;102:344–52.
13. Cordon-Cardo C. Mutation of cell cycle regulators. Biological and clinical implications for human neoplasia. Am J Pathol 1995;147:545—60
14. Somers KD, Merrick MA, Lopez ME, Incognito LS, Schechter GL, Casey G. Frequent p53 mutations in head and neck cancer. Cancer Res 1992;52:5997—6000.
15. Caamano J, Zhang SY, Rosvold EA, Bauer B, Klein-Szanto AJ. p53 alterations in human squamous cell carcinomas and carcinoma cell lines. Am J Pathol 1993;142:1131—9.
16. Tjebbes GW, Leppers VD, Straat FG, Tilanus MG, Hordijk GJ, Slootweg PJ. p53 tumor suppressor gene as a clonal marker in head and neck squamous cell carcinoma: p53 mutations in primary tumor and matched lymph node metastases. Oral Oncol 1999;35:384—9.
17. Hanken H, Gröbe A, Cachovan G, et al. CCND1 amplification and cyclin D1 immunohistochemical expression in head and neck squamous cell carcinomas. Clin Oral Investig 2014;18:269–76.
18. Monteiro LS, Diniz-Freitas M, Warnakulasuriya S, Garcia-Caballero T, Forteza-Vila J, Fraga M. Prognostic significance of cyclins A2, B1, D1, and E1 and CCND1 numerical aberrations in oral squamous cell carcinomas. Anal Cell Pathol (Amst) 2018;2018:7253510.
19. Ramos-García P, González-Moles MÁ, González-Ruiz L, et al. Clinicopathological significance of tumor cyclin D1 expression in oral cancer. Arch Oral Biol 2019;99:177–82.
20. Ramos-García P, González-Moles MÁ, Ayén Á, et al. Asymmetrical proliferative pattern loss linked to cyclin D1 overexpression in adjacent non-tumour epithelium in oral squamous cell carcinoma. Arch Oral Biol 2019;97:12–21. Ramos-García P, Bravo M, González-Ruiz L, González-Moles M. Significance of cytoplasmic cyclin D1 expression in oral oncogenesis. Oral Dis 2018;24:98–102.
22. Ramos-García P, González-Moles MÁ, González-Ruiz L, Ruiz-Ávila I, Ayén Á, Gil- Montoya JA. Prognostic and clinicopathological significance of cyclin D1 expression in oral squamous cell carcinoma: a systematic review and meta-analysis. Oral Oncol 2018;83:96–106.
23.Artavanis-Tsakona S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal transduction in development. Science (80-) 1999;284:770–776.
24. Weng AP, Adolfo *, Ferrando A, et al. Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia Downloaded from.; 2004.
25. Stransky N, Egloff AM, Tward AD, et al. The Mutational Landscape of Head Squamous Cell Carcinoma. Science (80-) 2014;333:1157–1160
26. Cancer Genome Atlas Network T. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015;517:576–82.
27. Sakamoto K. Notch signaling in oral squamous neoplasia. Pathol Int 2016;66:609–17.
28. Pickering CR, Zhang J, Yoo SY, et al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov 2013;3:770–81.
29. Song X, Xia R, Li J, et al. Common and complex Notch1 mutations in chinese oral squamous cell carcinoma. Clin Cancer Res 2014;20:701–10.
30. Fan H, Paiboonrungruan C, Zhang X, et al. Nrf2 regulates cellular behaviors and Notch signaling in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2017;493:833–9.
31.Seeburg PH, Ullrich A, Mayes EL V, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 2004;309:418–25.
32. Lo HW, Hung MC. Nuclear EGFR signalling network in cancers: Linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer 2006;94:184–8.
33. Kalyankrishna S, Grandis JR. Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol 2006;24:2666–72.
34.Grandis JR, Melhem MF, Barnes EL, Tweardy DJ. Quantitative immunohistochemical analysis of transforming growth factor- α and epidermal growth factor receptor in patients with squamous cell carcinoma of the head and neck. Cancer 1996;78:1284–92.
35.Chen IH, Chang JT, Liao CT, Wang HM, Hsieh LL, Cheng AJ. Prognostic significance of EGFR and Her-2 in oral cavity cancer in betel quid prevalent area. Br J Cancer 2003;89:681–6.
36.Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: The PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006;6:184–92.
37.Matsuo FS, Andrade MF, Loyola AM, et al. Pathologic significance of AKT, mTOR, and GSK3β proteins in oral squamous cell carcinoma-affected patients. Virchows Arch 2018;472:983–97.
38.Martins F, de Sousa SCOM, dos Santos E, Bin Woo S, Gallottini M. PI3K–AKT–mTOR pathway proteins are differently expressed in oral carcinogenesis. J Oral Pathol Med 2016;45:746–52.
39.Zhang H, Liu J, Fu X, Yang A. Identification of key genes and pathways in tongue squamous cell carcinoma using bioinformatics analysis. Med Sci Monit 2017;23:5924–32
.40.Wang H, Deng X, Zhang J, et al. Elevated expression of zinc finger protein 703 promotes cell proliferation and metastasis through PI3K/AKT/GSK-3β signalling in oral squamous cell carcinoma. Cell Physiol Biochem 2017;44:920–34.
41. Yang H, Wen L, Wen M, et al. FoxM1 promotes epithelial-mesenchymal transition, invasion, and migration of tongue squamous cell carcinoma cells through a c-met/ akt-dependent positive feedback loop. Anticancer Drugs 2018;29:216–26.
42.Zhang H, Sun JD, Yan L, Jian, Zhao XP. PDGF-D/PDGFRβ promotes tongue squamous carcinoma cell (TSCC) progression via activating p38/AKT/ERK/EMT signal pathway. Biochem Biophys Res Commun 2016;478:845–51.
43.Ito K, Ota A, Ono T, et al. Inhibition of Nox1 induces apoptosis by attenuating the AKT signaling pathway in oral squamous cell carcinoma cell lines. Oncol Rep 2016;36:2991–8.
44. Zhang X, Liu N, Ma D, et al. Receptor for activated C kinase 1 (RACK1) promotes the progression of OSCC via the AKT/mTOR pathway. Int J Oncol 2016;49:539–48.
45.Sager R. Expression genetics in cancer: shifting the focus from DNA to RNA. Proc Natl Acad Sci USA 1997;94:952—5.
46.Helbing CC, Veillette C, Riabowol K, Johnston RN, Garkavtsev I. A novel candidate tumor suppressor, ING1, is involved in the regulation of apoptosis. Cancer Res 1997;57:1255—8.
47.Garkavtsev I, Riabowol K. Extension of the replicative life span of human diploid fibroblasts by inhibition of the p33ING1 candidate tumor suppressor. Mol Cell Biol 1997;17:2014—9.
48. Garkavtsev I, Kazarov A, Gudkov A, Riabowol K. Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nat Genet 1996;14:415—20.
49.Yu GZ, Zhu MH, Zhu Z, Ni CR, Zheng JM, Li FM. Genetic alterations and reduced expression of tumor suppressor p33(ING1b) in human exocrine pancreatic carcinoma. World J Gastroenterol 2004;10:3597—601
50. Zeremski M, Horrigan SK, Grigorian IA, Westbrook CA, Gudkov AV. Localization of the candidate tumor suppressor gene ING1 to human chromosome 13q34. Somat Cell Mol Genet 1997;23: 233—6.
51.Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R et al. Identification of the familial cylindromatosis tumoursuppressor gene. Nat Genet 2000;25:160—5.
52. Biggs PJ, Wooster R, Ford D, Chapman P, Mangion J, Quirk Y, et al. Familial cylindromatosis (turban tumour syndrome) gene localised to chromosome 16q12—q13: evidence for its role as a tumour suppressor gene. Nat Genet 1995;11:441—3.
53.Brummelkamp TR, Nijman SM, Dirac AM, Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003;424:797—801.
54.Biggs PJ, Chapman P, Lakhani SR, Burn J, Stratton MR. The cylindromatosis gene (cyld1) on chromosome 16q may be the only tumour suppressor gene involved in the development of cylindromas. Oncogene 1996;12:1375—7
55.Nybrone O, Bock E. Structure and function of the neural cell adhesion molecules NCAM and L1. Adv Exp Med Biol 1990; 265:185—96.
56.Barthels D, Vopper G, Boned A, Cremer H, Wille W. High degree of NCAM diversity generated by alternative RNA splicing in brain and muscle. Eur J Neurosci 1992;4:327—37.
57.Einheber S, Hannocks M-J, Metz CN, Rifkin DB, Salzer JL. Transforming growth factor-b1 regulates Axon/Schwann cell interactions. J Cell Biol 1995;129:443—58.
58.Seki H, Koyama K, Tanaka J, Sato Y, Umezawa A. Neural cell adhesion molecule and perineural invasion in gallbladder cancer. J Surg Oncol 1995;58:97—100.
59.Seki H, Tanaka J, Sato Y, Kato Y, Umezawa A, Koyama K. Neural cell adhesion molecule (NCAM) and perineural invasion in bile duct cancer. J Surg Oncol 1993;53:78—83.
60. Gandour-Edwards R, Kapadia SB, Barnes L, Donald PJ, Janecka IP. Neural cell adhesion molecule in adenoid cystic carcinoma invading the skull base. Otolaryngol Head Neck Surg 1997;117: 453—8.
61.Nakashima M, Sonoda K, Watanabe T. Inhibition of cell growth and induction of apoptotic cell death by the human tumor associated antigen RCAS1. Nat Med 1999;5:938—42.
62.Sonoda K, Nakashima M, Saito T, Amada S, Kamura T, Nakano H, et al. Establishment of a new human uterine cervical adenocarcinoma cell line, SiSo, and its reactivity to anti-cancer reagents. Int J Oncol 1995;6:1099—104
63.Fukuda M, Tanaka A, Hamao A, Suzuki S, Kusama K, Sakashita H. Expression of RCAS1 and its function in human squamous cell carcinoma of the oral cavity. Oncol Rep 2004;12: 259—67.
64. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995;3: 673—82.
65.Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996;271:12687—90
66.Degli-Esposti MA, Smolak PJ, Walczak H, Waugh J, Huang CP, DuBose RF, et al. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 1997;186:1165—70.
67. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997;277: 818—21
68.Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001;357:539—45.
69.Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860—7.
70.Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM. Cyclooxygenases in cancer: progress and perspective.Cancer Lett 2004;215:1—20.
71. Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, et al. IL-23 promotes tumour incidence and growth. Nature 2006;27:461—5.
72. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M, et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 1993;178: 1223—30.
73.Nastala CL, Edington HD, McKinney TG, Tahara H, Nalesnik MA, Brunda MJ, et al. Recombinant IL-12 administration induces tumor regression in association with IFN-production. J Immunol 1994;153:1697—706.
74.Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, et al. Divergent pro- and anti-inflammatory roles for IL-23 and IL-12 in joint auto-immune inflammation. J Exp Med 2003;198:1951—7.
75.Karin M, Cao Y, Greten FR, Li ZW. NF-kB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002; 2:301—10.
76. Orlowski RZ, Baldwin Jr AS. NF-kappaB as a therapeutic target in cancer. Trends Mol Med 2002;8:385—9.
77.Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002;2:725—34.
78.Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 1997;94:8104—9.
79.Ryan HE, Lo J, Johnson RS. HIF-1a is required for solid tumor formation and embryonic vascularization. EMBO J 1998; 17:3005—15.
80.Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DA, Bauer C, et al. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J 2001;15:2445—53.
81.Akakura N, Kobayashi M, Horiuchi I, Suzuki A, Wang J, Chen J, et al. Constitutive expression of hypoxia-inducible factor- 1alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res 2001;61(17):6548—54.
82.Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, et al. Role of HIF-1a in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998;394:485—90.
83.Feinberg AP, Vogelstein B. Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 1983;111:47–54.
84.Andrew PF, Bert V. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983;301:89–92.
85. Allameh A, Moazeni-Roodi A, Harirchi I, et al. Promoter DNA methylation and mRNA expression level of p16 gene in oral squamous cell carcinoma: correlation with clinicopathological characteristics. Pathol Oncol Res 2018.
86.Hasegawa M, Nelson HH, Peters E, Ringstrom E, Posner M, Kelsey KT. Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene 2002;21:4231–6.
87. Strzelczyk JK, Krakowczyk L, Owczarek AJ. Aberrant DNA methylation of the p16, APC, MGMT, TIMP3 and CDH1 gene promoters in tumours and the surgical margins of patients with oral cavity cancer. J Cancer 2018;9:1896–904.
88.Lin RK, Hsieh YS, Lin P, et al. The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J Clin Invest 2010;120:521–32
89. Breitling LP, Yang R, Korn B, Burwinkel B, Brenner H. Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am J Hum Genet 2011;88:450–7.
90.Kordi-Tamandani DM, Ladies MAR, Hashemi M, Moazeni-Roodi A-K, Krishna S, Torkamanzehi A. Analysis of p15 INK4b and p16 INK4a gene methylation in patients with oral squamous cell carcinoma. Biochem Genet 2012;50:448–53.

91.Ishida E, Nakamura M, Ikuta M, et al. Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma. Oral Oncol 2005;41:614–22.
92.Huang KH, Huang SF, Chen IH, Liao CT, Wang HM, Hsieh LL. Methylation of RASSF1A, RASSF2A, and HIN-1 is associated with poor outcome after radiotherapy, but not surgery, in oral squamous cell carcinoma. Clin Cancer Res 2009;15:4174–80
93.Imai T, Toyota M, Suzuki H, et al. Epigenetic inactivation of RASSF2 in oral squamous cell carcinoma. Cancer Sci 2008;99:958–66.
94.Almangush A, Heikkinen I, Mäkitie AA, et al. Prognostic biomarkers for oral tongue squamous cell carcinoma: a systematic review and meta-analysis. Br J Cancer 2017;117:856–66.
95.Zhao SF, Yang XD, Lu MX, et al. Prognostic significance of VEGF immunohistochemical expression in oral cancer: a meta-analysis of the literature. Tumor Biol 2013;34:3165–71
96. Liu PF, Kang BH, Wu YM, et al. Vimentin is a potential prognostic factor for tongue squamous cell carcinoma among five epithelial-mesenchymal transition-related proteins. PLoS ONE 2017;12.
97.Angadi PV, Patil PV, Angadi V, et al. Immunoexpression of epithelial mesenchymal transition proteins E-cadherin, β-catenin, and N-cadherin in oral squamous cell carcinoma. Int J Surg Pathol 2016;24:696–703.
98.Bu J-Q, Chen F. TGF-beta1 promotes cells invasion and migration by inducing epithelial mesenchymal transformation in oral squamous cell carcinoma. Eur Rev Med Pharmacol Sci 2017;21:2137–44.
99.Cirillo N, Hassona Y, Celentano A, et al. Cancer-associated fibroblasts regulate keratinocyte cell-cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer. Carcinogenesis 2017;38:76–85.
100.Laxmidevi LB, Angadi PV, Pillai RK, Chandreshekar C. Aberrant β-catenin expression in the histologic differentiation of oral squamous cell carcinoma and verrucous carcinoma: an immunohistochemical study. J Oral Sci 2010;52:633–40.
101.González-Moles MA, Ruiz-Ávila I, Gil-Montoya JA, Plaza-Campillo J, Scully C. β- Catenin in oral cancer: an update on current knowledge. Oral Oncol 2014;50:818–24
Published
2022-10-04
How to Cite
SINGH, H., PATEL, V., SHARMA, D., SHARMA, N., RAZDAN, R. A., & PARIHAR, N. (2022). Understanding the role of molecular and genetic alterations in proliferation and progression of oral squamous cell carcinoma : A review article. UNIVERSITY JOURNAL OF DENTAL SCIENCES, 9(1). https://doi.org/10.21276//ujds.2023.9.1.17